Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6062, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480760

RESUMO

With the large increase in human marine activity, our seas have become populated with vessels that can be overheard from distances of even 20 km. Prior investigations showed that such a dense presence of vessels impacts the behaviour of marine animals, and in particular dolphins. While previous explorations were based on a linear observation for changes in the features of dolphin whistles, in this work we examine non-linear responses of bottlenose dolphins (Tursiops Truncatus) to the presence of vessels. We explored the response of dolphins to vessels by continuously recording acoustic data using two long-term acoustic recorders deployed near a shipping lane and a dolphin habitat in Eilat, Israel. Using deep learning methods we detected a large number of 50,000 whistles, which were clustered to associate whistle traces and to characterize their features to discriminate vocalizations of dolphins: both structure and quantities. Using a non-linear classifier, the whistles were categorized into two classes representing the presence or absence of a nearby vessel. Although our database does not show linear observable change in the features of the whistles, we obtained true positive and true negative rates exceeding 90% accuracy on separate, left-out test sets. We argue that this success in classification serves as a statistical proof for a non-linear response of dolphins to the presence of vessels.


Assuntos
Golfinho Nariz-de-Garrafa , Vocalização Animal , Animais , Humanos , Vocalização Animal/fisiologia , Golfinho Nariz-de-Garrafa/fisiologia , Acústica , Oceanos e Mares , Navios , Espectrografia do Som
2.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772431

RESUMO

The calculation of the drag force is a fundamental requirement in the design of any submerged system intended for marine exploration. The calculation can be performed by analytic analysis, numerical modeling, or by a direct calculation performed in a designated testing facility. However, for complex structures and especially those with a non-rigid design, the analytic and numerical analyses are not sufficiently accurate, while the direct calculation is a costly operation. In this paper, we propose a simple approach for how to calculate the drag coefficient in-situ. Aimed specifically at the complex case of elastic objects whose modeling via Computer-Aided Design (CAD) is challenging, our approach evaluates the relation between the object's speed at steady-state and its mass to extract the drag coefficient in any desired direction, the hydro-static force, and, when relevant, also the thruster's force. We demonstrate our approach for the special case of a highly complex elastic-shaped floater that profiles the water column. The analysis of two such floaters in two different sea environments shows accurate evaluation results and supports our claim for robustness. In particular, the simplicity of the approach makes it appealing for any arbitrary shaped object.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...